$G_2$-geometry in contact geometry of second order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent metrics in the geometry of second order differential equations

Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...

متن کامل

Geometry of Linear Differential Systems –towards– Contact Geometry of Second Order

where Jx = Gr(Tx(M), n) is the Grassmann manifold of all n-dimensional subspaces of the tangent space Tx(M) to M at x. Each element u ∈ J(M,n) is a linear subspace of Tx(M) of codimension m, where x = π(u). Hence we have a differential system C of codimension m on J(M,n) by putting: C(u) = π−1 ∗ (u) ⊂ Tu(J(M,n)) π∗ −→ Tx(M). for each u ∈ J(M,n). C is called the Canonical System on J(M,n). We ca...

متن کامل

recurrent metrics in the geometry of second order differential equations

given a pair (semispray $s$, metric $g$) on a tangent bundle, the family of nonlinear connections $n$ such that $g$ is recurrent with respect to $(s, n)$ with a fixed recurrent factor is determined by using the obata tensors. in particular, we obtain a characterization for a pair $(n, g)$ to be recurrent as well as for the triple $(s, stackrel{c}{n}, g)$ where $stackrel{c}{n}$ is the canonical ...

متن کامل

Time-fixed geometry of 2nd order ODEs

Abstract : Let be a 2nd order ODE. By Cartan equivalence method, we will study the local equivalence problem under the transformations group of time-fixed coordinates. We are going to solve this problem by an applicable method which has been recognized by R. Gardner, and classify them.   

متن کامل

Contact Geometry

2 Contact manifolds 4 2.1 Contact manifolds and their submanifolds . . . . . . . . . . . . . . 6 2.2 Gray stability and the Moser trick . . . . . . . . . . . . . . . . . . 13 2.3 Contact Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Darboux’s theorem and neighbourhood theorems . . . . . . . . . . 17 2.4.1 Darboux’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 2019

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.2019.v26.n1.a4